





## Making Sentence Embeddings Robust to User-Generated Content

Lydia Nishimwe
Inria, France
lydia.nishimwe@inria.fr



## LREC-COLING 2024

Lydia Nishimwe, Benoît Sagot, and Rachel Bawden. 2024. **Making Sentence Embeddings Robust to User-Generated Content.** In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 10984–10998, Torino, Italia. ELRA and ICCL.

#### Making Sentence Embeddings Robust to User-Generated Content

Lydia Nishimwe, Benoît Sagot, Rachel Bawden

Inria
2 rue Simone Iff, 75012 Paris, France
{firstname.lastname}@inria.fr

#### **Abstract**

NLP models have been known to perform poorly on user-generated content (UGC), mainly because it presents a lot of lexical variations and deviates from the standard texts on which most of these models were trained. In this work, we focus on the robustness of LASER, a sentence embedding model, to UGC data. We evaluate this robustness by LASER's ability to represent non-standard sentences and their standard counterparts close to each other in the embedding space. Inspired by previous works extending LASER to other languages and modalities, we propose RoLASER, a robust English encoder trained using a teacher-student approach to reduce the distances between

## I. Introduction

Background and Motivation

## Natural Language Processing (NLP)



#### **Encoder-Decoder Tasks**

- Machine translation
- Text summarisation
- Question answering

e.g. Bing Translator

#### **Encoder-only Tasks**

- Text classification
- Named Entity Recognition (NER)
- Part-of-Speech (PoS)
   Tagging
- Textual Entailment

#### **Decoder-only Tasks**

- Text generation/completion
- Language modelling
- Code generation

e.g. GPT

## Word embeddings



(Hariom Gautam, 2020)

#### **Tokenisation**

This is a sentence.

words: This is a sentence.

subwords: This is a sent ##ence.

characters: This\_is\_a \_sentence\_.

#### **BERT**



#### CharacterBERT



(El Boukkouri et al., 2020)

#### Sentence embeddings

## Fixed sentence embedding Pooler Contextualized word embeddings Bert

#### **Applications**

- Semantic Textual Similarity (STS)
  - Plagiarism detection
  - Document clustering
- Bitext Mining
- Text Classification
  - Sentiment analysis
  - Spam detection
  - Topic classification
- Text Pair Classification
  - Paraphrase Identification
- Information Retrieval (IR)
  - Search engines
  - Question answering

How I do learn python?

#### LASER: Language-Agnostic SEntence Representations



(Artetxe and Schwenk, 2019) (Heffernan et al., 2022)

(Duquenne et al., 2022)

## LASER's multilingual embeddings



## User-Generated Content (UGC)

Ergographic phenomena (encoding simplification)

i don wanna fyt witchu

al b an our l8

c u 2moro

Neologisms

The math is not **mathing**.

burkini

Transverse phenomena

i aint playin

idk

afaik

N. E. V. E. R

Foreign language influence

Cette fête a l'air fun, let's go!

likez et commentez

Marks of expressiveness

superrrr!!!!





!d10t

sh\*t

(Seddah et al., 2012) (Zalmout et al., 2019) (Sanguinetti et al., 2020)

## LASER's UGC embeddings



See you tomorrow.

Standard text 2:

See you tomorrow.

Standard text 3:

See you tomorrow.

Standard text 4:

See you tomorrow.

Standard text 5:

See you tomorrow.

Non-standard text 1:

See you t03orro3.

Non-standard text 2:

C. U. tomorrow.

Non-standard text 3:

sea you tomorrow.

Non-standard text 4:

See yo utomorrow.

Non-standard text 5:

Cu 2moro.



#### Negative effects of UGC











## Multilingual sentence embeddings



(Artetxe and Schwenk, 2019) (Nishimwe et al., 2024)

## II. Proposed Approach

#### Teacher-Student training



- LASER (teacher):
  - 45M parameters
  - 5-layer bi-LSTM
  - 1024 output dimension
  - fixed during training
- RoLASER [Robust LASER] (student):
  - 108M parameters
  - 12-layer Transformer
  - 768 output dimension
  - projection layer -> 1024
- c-RoLASER (student):
  - 104M parameters
  - same as RoLASER, except for
  - Character-CNN input embedding layer

## Generating artificial UGC (NL-Augmenter)

abbreviations, acronyms, slang

abr1 because → cuz

abr2 easy → ez

abr3 ASAP ↔ as soon as possible

jewellery → bling bling

contractions and expansions

cont | lam ↔ l'm

week Monday ↔ Mon.

visual and segmentation

leet love → l0V3

spac hello there → h elloth ere

misspellings

fing tried → triwd

homo there ↔ their

dyst lose ↔ loose

spel absent → apsent

(Dhole et al., 2021)

16

#### Generating artificial UGC training data



"Luckily **nothing** happened **to** me, but I saw a macabre scene, as **people tried to** break windows in order **to get** out."

"Luckily **nthing** happened **2** me, but I saw a macabre scene, as **ppl triwd 2** break windows in order **2 gt** out."

#### Artificial UGC training data





## III. Experiments

#### **Evaluation data**

| Corpus                                 | UGC sentence                                                                                                                          | Standard(ised) sentence                                                                                                                             |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| MultiLexNorm <sup>&gt;</sup>           | if i <b>cnt</b> afford the real deal , i ain't buying <b>nuffin</b> fake i just won't have it                                         | if i can't afford the real deal, i ain't buying nothing fake i just won't have it                                                                   |
| RoCS-MT <sup>‡</sup>                   | Umm idk, maybe its bc we're DIFFERENT PEOPLE with DIFFERENT BODIES???                                                                 | Um, I don't know, maybe it's because we're different people with different bodies?                                                                  |
| FLORES <sup>†</sup> abr2 + fing + abr1 | "Luckily <b>nthing</b> happened <b>2</b> me, but I saw a macabre scene, as <b>ppl triwd 2</b> break windows in order <b>2 gt</b> out. | "Luckily <b>nothing</b> happened <b>to</b> me, but I saw<br>a macabre scene, as <b>people tried to</b> break<br>windows in order <b>to get</b> out. |

- MultiLexNorm (van der Goot et al., 2021)
  - Twitter
  - English test set: 1967 sentences
- RoCS-MT (Bawden and Sagot, 2023)
  - Reddit
  - 1922 sentences in English (standard

- ⇔ UGC)
- Translations into 5 languages
- FLORES-200 (NLLB Team et al., 2022)
  - WikiNews, WikiBooks, WikiVoyage
  - parallel texts in 200 languages
  - 997 dev and 1012 test sentences

#### Experimental setup

#### Training data:

- 2M "bilingual" standard-UGC lines
- 2M standard English lines from the OSCAR dataset (Ortiz Suárez et al., 2019)
- augmented with the mix\_all transformation

#### Validation data:

FLORES-200 dev set + mix\_all

#### RoLASER training:

- initialised with RoBERTa (Liu et al., 2019)
- 98 epochs

#### c-RoLASER training:

- initialised with CharacterBERT (El Boukkouri et al., 2020)
- 32 epochs

#### **Evaluation metrics**

- Average pairwise cosine distance
- **xSIM** (Artetxe and Schwenk, 2019)
  - cross-lingual similarity search
  - proxy metric for bitext mining
  - error rate of aligning translations pairs
- **xSIM++** (Chen et al., 2023)
  - augmenting the English sets of FLORES-200
  - altering the meaning
  - minimal surface changes
  - more challenging than xSIM

How closely the models embed non-standard sentences to their standard counterparts

How well the models align non-standard sentences to their standard counterparts

#### **Evaluating robustness**

- Does robustness to artificial UGC translate to robustness to natural UGC?
- 2. Can the students replace LASER at representing English sentences in a multilingual setting?
- 3. Does robustness to UGC degrade performance on standard data?
- 4. Does robustness in sentence embeddings impact performance on downstream tasks?

## IV. Results and Analysis

#### Evaluation on natural UGC





(lower is better)

#### Evaluation on artificial UGC



(lower is better)

#### LASER's embeddings of UGC and other languages



# Evaluation on UGC and standard data in a multilingual setting (1)

#### **ROCS-MT ENGLISH→XX**



(lower is better)

# Evaluation on UGC and standard data in a multilingual setting (2)

#### **ROCS-MT XX→ENGLISH**



(lower is better)

#### Evaluation on downstream tasks (1)

- 1. Sentence classification, which predicts labels from sentence embeddings, e.g. sentiment labels:
  - Tweet Sentiment Extraction Classification
- 2. Sentence pair classification, which predicts a binary label from sentence embeddings, e.g. whether two sentences are paraphrases:
  - Twitter Sem Eval 2015
  - Twitter URL Corpus
- 3. Semantic textual similarity, which examines the degree of semantic equivalence between two sentences:
  - STS Benchmark

## Evaluation on downstream tasks (2)

#### MTEB: MASSIVE TEXT EMBEDDING BENCHMARK



(higher is better)

## V. Conclusion

## (c-)RoLASER's UGC embeddings

Standard text 1:

See you tomorrow.

Standard text 2:

See you tomorrow.

Standard text 3:

See you tomorrow.

Standard text 4:

See you tomorrow.

Standard text 5:

See you tomorrow.

Non-standard text 1:

See you t03orro3.

Non-standard text 2:

C. U. tomorrow.

Non-standard text 3:

sea you tomorrow.

Non-standard text 4:

See yo utomorrow.

Non-standard text 5:

Cu 2moro.



## **Takeaways**

Approach:

#### Making LASER more robust to UGC English

- 1. Teacher-Student training
- 2. Minimising the standard-UGC distance in the embedding space
- 3. Generating and training on synthetic UGC-like data

Extending RoLASER to more languages and their corresponding UGC phenomena...

Future work

Results:

#### RoLASER is significantly more robust than LASER

- on natural and artificial UGC
- on standard data and downstream tasks (improves/matches LASER's performance)

Findings:

- 1. c-RoLASER struggles to map its standard embeddings to LASER's
- 2. Most challenging UGC phenomena: character-level perturbations that shatter subword tokenisation

# Thaaanx!!! Do u hv any qweschuns?



Paper



RoLASER Demo App

https://huggingface.co/spaces/ lydianish/rolaser-demo



Github

https://github.com/lydianish/RoLASER